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A new uniform asymptotic approximation for the Wigner 6j-symbol is given in terms of Wigner rotation
matrices (d-matrices). The approximation is uniform in the sense that it applies for all values of the quantum
numbers, even those near caustics. The derivation of the new approximation is not given, but the geometrical
ideas supporting it are discussed and numerical tests are presented, including comparisons with the exact
6j-symbol and with the Ponzano-Regge approximation.

1. Introduction

The Wigner 6j-symbol is used in the recoupling of three
angular momenta and finds many applications in atomic,
molecular, and nuclear physics. These are explained in standard
references on angular momentum theory.1-4 For example, the
3nj-symbols and their asymptotic properties are central to certain
algorithms for the calculation of scattering amplitudes in three-
body interactions (De Fazio et al.5 and Anderson and Aquilanti6).
These methods make use of the relationship between the 3nj-
symbols and discrete orthogonal polynomials (Aquilanti et al.7-9

and references therein).
The 6j-symbol possesses a remarkable semiclassical ap-

proximation, first obtained by Ponzano and Regge10 through
some inspired guesswork, that is linked in a highly symmetrical
manner to the geometry of a tetrahedron in three-dimensional
space. This formula was proven rigorously by Schulten and
Gordon,11 who also gave a practical means of computing the
6j-symbol by recursion relations (earlier work by Neville12 was
along the same lines but less complete). More recently the 6j-
symbol has attracted attention for the role it plays in quantum
gravity, which has led to more geometrical treatments of its
asymptotic properties. References in this area include Roberts13

and Charles.14

The formula of Ponzano and Regge has the usual properties
of primitive semiclassical approximations, for example, it
diverges at the classical turning points (the caustics). Although
the 6j-symbol is only defined for discrete values of the quantum
numbers, it can nevertheless fall exactly on a caustic, as shown
by the theory of Brahmagupta quadrilaterals,15 and in other cases
it comes very close to a caustic (an example is shown in Figure
3 below). For such values the Ponzano-Regge formula does
not provide a good approximation. Thus there is interest in
uniform approximations that do not suffer from caustic singu-
larities and that are valid over as wide a range of quantum
numbers as possible.

In addition to proving the Ponzano-Regge formula for the
6j-symbol, Schulten and Gordon also provided uniform asymp-
totic approximations of the Airy function type that are valid in
a region passing through a turning point. The 6j-symbol,
however, has two turning points when one of the j’s is varied
and the others held fixed, in a manner reminiscent of an ordinary
oscillator in one dimension. The Airy function uniform ap-

proximation can only cover one of these at a time, and if two
Airy-function approximations are used, then they do not match
smoothly in the middle. This suggests that a uniform ap-
proximation of the Weber function type (one based on harmonic
oscillator wave functions) should be used, which would cover
both turning points at once.

It turns out, however, that this cannot be done, in general.
An idea of why this is so is given by Figure 1, which shows
the 6j-symbol and the Ponzano-Regge approximation as a
function of j12 for certain values of the other five j’s (notation
is explained by (1) below). The sticks in the diagram give
the exact values of the 6j-symbol, while the curve is the
Ponzano-Regge approximation. Although the 6j-symbol is
only defined for discrete values of j12, the Ponzano-Regge
approximation is defined for continuous values of the
parameters and allows us to talk of the phase of the 6j-symbol
in an unambiguous manner. The Ponzano-Regge approxima-
tion shows the expected divergences at the caustics or turning
points, and the Airy function behavior at the right turn-
ing point. In the classically allowed region between the
turning points, the wavelength decreases as we move to the
left, corresponding to an increase in the variable conju-
gate to j12 (the angle φ12, defined in section 2.4 below). At
the left turning point the Airy function is not so obvious,
because it is multiplied by a rapidly oscillating cosine term.
This is because the angle φ12 conjugate to j12 reaches the
value (π at the left turning point.† Part of the “Vincenzo Aquilanti Festschrift”.

Figure 1. The 6j-symbol as a function of j12 for j1 ) 16, j2 ) 80, j3

) 208, j4 ) 272, and j23 ) 276. Sticks are the values of the 6j-symbol,
and the curve is the Ponzano-Regge approximation.
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The behavior illustrated in Figure 1 cannot be matched by
a Weber function (harmonic oscillator eigenfunction), for
which both turning points have the behavior of an unmodu-
lated Airy function. Related to this is the fact that the
difference between the Ponzano-Regge phases at the two
turning points is not of the form (n + 1/2)π for the parameters
shown in Figure 1. For harmonic oscillator eigenfunctions
the difference in the action between the two turning points
is always of the form (n + 1/2)π, a condition that is equivalent
to the single valuedness of the WKB wave function (that is,
it is the Bohr-Sommerfeld quantization condition). One can
say that the 6j symbol has a nonstandard matching condition
of the two WKB branches at the lower turning point for the
parameters in Figure 1.

Ultimately there are topological reasons for the failure of the
Weber function as a standard form for a uniform approximation
in cases such as that illustrated in Figure 1. Uniform approxima-
tions are based on a smooth, area preserving map between the
phase space of the given problem and the standard problem.
But the phase space of the 6j-symbol is a sphere (we call it the
6j-sphere), and the phase space of the harmonic oscillator is a
plane. These two spaces cannot be continuously mapped into
one another.

We have noticed, however, that the phase space that arises
in the semiclassical analysis of the Wigner d-matrices (rotation
matrices) is also a sphere. We call this the d-sphere, to
distinguish it from the 6j-sphere. Moreover, the classical orbits
on the two spheres are topological circles in both cases, and in
both cases intersecting orbits always intersect in two points,
unless they are tangent, in which case there is one intersection
point. There are also cases in which the orbits do not intersect
at all, corresponding to classically forbidden regions. As is well
known, the classical orbits and their intersections provide the
geometrical framework for the construction of semiclassical
(asymptotic) approximations. These topological features are the
same for both the 6j-sphere and the d-sphere, suggesting that
one can be mapped into the other by a smooth transformation
that takes a pair of orbits on one sphere into the pair of orbits
on the other.

We have worked out the details of this mapping and the
corresponding uniform approximation. The resulting approxima-
tion is smooth and uniform over the entire range of quantum
numbers j12 and j23 (for fixed j1, j2, j3, and j4). For most values
of the j’s it is more accurate than the Ponzano-Regge
approximation, certainly near the caustics but also at most other
places. We have found no places where it is dramatically worse
than the Ponzano-Regge approximation.

In this paper we shall present the new uniform approxima-
tion itself, as well as some of the geometric rationale behind
it, which helps considerably in understanding the formula
and the various regions that it covers. In addition, we shall
present some numerical tests of the new formula and
comparisons with the exact 6j-symbol and the Ponzano-Regge
approximation. We shall not, however, present the details
of the derivation, which we shall reserve for a future, more
technical, publication.

The outline of this paper is as follows. In section 2 we present
a collection of facts about the 6j-symbol and its asymptotic or
semiclassical approximation (the Ponzano-Regge formula),
emphasizing the spherical phase space and its geometrical
ramifications. In section 3 we present a geometrical treatment
of the asymptotic properties of the rotation matrices (d-matrices)
that emphasizes the similarities with the 6j-symbol. In section
4 we outline the ideas behind the uniform approximation of

the 6j-symbol in terms of d-matrices, we present the actual
formulas, and we present some numerical tests. Finally, in
section 5 we make some conclusions.

2. The 6j Symbol

2.1. Quantum Mechanics of the 6j Symbol. We set p ) 1,
so all angular momenta are dimensionless. We label the j’s in
the 6j-symbol by

which is how it would used when recoupling three angular
momenta.

The quantum number ji, i ) 1, 2, 3, 4, 12, 23, just gives the
magnitude of the angular momentum and does not specify the
sign of the operator. For example, instead of coupling three
angular momenta to obtain a fourth, that is, setting J4 ) J1 +
J2 + J3, we can couple four angular momenta with a sum of
zero

(effectively changing the sign of J4). This is how we shall regard
the recoupling problem in this paper. Usually we will think of
ji, i ) 1, 2, 3, 4 as given, while j12 and j23 are variable
intermediate angular momenta that result from the coupling of
the first four. They are the quantum numbers of the squares of
the operators

With this interpretation, the 6j-symbol in the form (1) is
proportional to the unitary matrix element 〈j12|j23〉 that takes
one from the eigenbasis of one intermediate angular mo-
mentum (j12) to the eigenbasis of the other (j23). These bases
span the subspace of the product space of four angular
momenta in which (2) holds as an operator equation. We
shall denote this subspace by Z (a mnemonic for “zero”, the
value of the total J). According to (2), the total angular
momentum vanishes on Z. The orthonormality relations
satisfied by the 6j-symbol (see, for example, Edmonds1 eq
6.2.9) are essentially a statement of the unitarity of the matrix
〈j12|j23〉.

To be defined, the 6j-symbol (1) must satisfy four triangle
inequalities, in (j1, j2, j12), (j2, j3, j23), (j3, j4, j12), and (j1, j4, j23),
for example, j12 must lie between the bounds

in integer steps. For given ji, i ) 1, 2, 3, 4, these imply that j12

and j23 vary between the limits

in integer steps, where

{j1 j2 j12

j3 j4 j23
} (1)

J1 + J2 + J3 + J4 ) 0 (2)

J12 ) J1 + J2, J23 ) J2 + J3 (3)

|j1 - j2| e j12 e j1 + j2 (4)

j12,min e j12 e j12,max

j23,min e j23 e j23,max
(5)
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The number of allowed j12 or j23 values is the same, and it is
the dimension D of the subspace Z as well as the size of the
matrix 〈j12|j23〉

2.2. Classical and Semiclassical Mechanics of the 6j-
Symbol. The basic reference on the semiclassical mechanics
of the 6j-symbol is Ponzano and Regge.10 We add to their
discussion an appreciation of the Gram matrix (see Appendix
A) and the recent realization that the phase space of the 6j-
symbol is a sphere.14

We shall reserve lower case ji for quantum numbers as in (1)
and for semiclassical purposes we shall set

(with capital J’s), for i ) 1, 2, 3, 4, 12, 23. The quantity Ji is
interpreted as the length of the classical angular momentum
vector associated with the quantum number ji. The correction
1/2 is a Maslov index, and the manner in which it arises in the
semiclassical theory of angular momentum is explained in
Aquilanti et al.16

We shall write Ji (in boldface) either for the vector of angular
momentum operators in quantum mechanics or for the classical
angular momentum vector in a classical model. The distinction
will be established by context. For example, in the classical
context, (2) is interpreted as a constraint on the four classical
vectors Ji, i ) 1, 2, 3, 4, while (3) is interpreted as the definitions
of two more classical angular momenta J12 and J23.

The condition (8) is a quantization condition of the
Bohr-Sommerfeld type, restricting the classical quantity Ji to
discrete values. Some authors have viewed (8) as an approxima-
tion to [j(j + 1)]1/2, valid when j is large, but in fact it is
represents the exact eigenvalues of a certain operator for all
values of j, even j ) 0. When properly understood,16 (8) is
equivalent to the fact that the eigenvalues of the operator J2 are
j(j + 1).

In purely classical mechanics, however, there is no quantiza-
tion, and all variables take on continuous values. We must allow
this in order to view the classical phase space. To visualize the
phase space of the 6j-symbol, we will assume that Ji, i )
1, 2, 3, 4 have any fixed positive values, while J12 and J23 are
variables, the lengths of the vectors J12 and J23 defined by (3).
Then J12 and J23 are restricted by classical versions of the triangle
inequalities

where J12 and J23 vary continuously between the bounds
indicated and where the bounds themselves are given by

These are the bounds of J12 and J23 on the 6j-sphere.
Here are two useful theorems. First, if J23, min ) J1 - J4 or J2

- J3, then J12, max ) J3 + J4, otherwise J12, max ) J1 + J2. Second,
if J12, min ) J1 - J2 or J4 - J3, then J23, max ) J2 + J3, otherwise
J23, max ) J1 + J4.

If the quantization conditions (8) hold for Ji, i ) 1, 2, 3, 4,
then the bounds on the continuous variables J12 and J23 can be
expressed in terms of the bounds on the quantum number j12

and j23 by

Combined with (7), these imply

If Ji > 0, i ) 1, 2, 3, 4, and if J12 and J23 satisfy the triangle
inequalities (9), then it is possible to find six classical vectors
Ji, i ) 1, 2, 3, 4, 12, 23 that can be placed end-to-end in subsets
of three to create four triangles. The triangles are defined by
(3), plus J12 + J3 + J4 ) 0 and J1 + J23 + J4 ) 0. In particular,
this can always be done when the six Ji satisfy the quantization
conditions (8) for values of ji that are valid in a 6j-symbol, in
which case Ji > 0 for all six i (because ji g 0) and the areas of
the triangles are positive (because the ji satisfy the triangle
inequalities).

For some values of the six Ji the four triangles can be fitted
together to form the four faces of a tetrahedron. This is the
classically allowed region of the 6j-symbol. If they can, then
the signed volume of the tetrahedron is given by

where the vectors Ai are defined in (87) (see Appendix A). The
volume is related to the nonnegative definite Gram matrix G
defined in (88) by

The tetrahedron is illustrated in Figure 2, which shows our
convention for labeling the edges by classical angular momen-
tum vectors. The vectors in the figure may be seen to satisfy
(2) and (3). The tetrahedron in Figure 2 has positive volume (V
> 0) according to the definition (13).

For other values of the Ji a real tetrahedron does not exist,
but a complex tetrahedron exists whose edges are complex
vectors Ji. These may be chosen so that the x and y components
are purely real and the z component is purely imaginary. This
is the classically forbidden region of the 6j-symbol. In this case
G is still given by (88) and it is still a real, symmetric matrix,
but it has one negative eigenvalue. Also, V2 < 0 and V is purely
imaginary. Equation 13 is still valid, however, in terms of the
complex vectors Ji. The dot product of complex vectors U and

j12,min ) max(|j1 - j2|, |j3 - j4|)
j23,min ) max(|j2 - j3|, |j1 - j4|)
j12,max ) min(j1 + j2, j3 + j4)
j23,max ) min(j2 + j3, j1 + j4)

(6)

D ) dim Z ) j12,max - j12,min + 1 ) j23,max - j23,min + 1
(7)

Ji ) ji +
1
2

(8)

J12,min e J12 e J12,max

J23,min e J23 e J23,max
(9)

J12,min ) max(|J1 - J2|, |J3 - J4|)
J23,min ) max(|J2 - J3|, |J1 - J4|)
J12,max ) min(J1 + J2, J3 + J4)
J23,max ) min(J2 + J3, J1 + J4)

(10)

J12,min ) j12,min, J12,max ) j12,max + 1
J23,min ) j23,min, J23,max ) j23,max + 1 (11)

D ) dim Z ) J12,max - J12,min ) J23,max - J23,min

(12)

V ) 1
6

J1 · (J2 × J3) )
1
6

A1 · (A2 × A3) (13)

36V2 ) det G (14)

14906 J. Phys. Chem. A, Vol. 113, No. 52, 2009 Littlejohn and Yu



V is defined by ∑iUiVi (not ∑iUi*Vi), and the length by Ji
2 )

Ji ·Ji (not Ji* ·Ji).
The classically allowed and forbidden regions are illustrated

in Figure 3. This figure shows the square region of the J12-J23

plane bounded by the classical limits (10) for certain fixed values
of ji, i ) 1, 2, 3, 4. The small spots inside the square are the
quantized values of J12 and J23, from which the quantum
numbers j12 and j23 can be extracted by (8). Notice that the
quantized values of J12 and J23 always stay at least one-half
unit away from the bounds (10). The oval curve is the curve V
) 0, separating the classically allowed from the classically
forbidden regions; it is the caustic curve. The classically allowed
and forbidden regions lie inside and outside the caustic curve,
respectively. Actually, there are four classically forbidden
regions, labeled ABCD in the figure. Similar diagrams describe
radiative transitions in hydrogen (see Figure 27 of ref 17).

The caustic curve consists of real tetrahedra that are flat; it
touches the square at four points, labeled XYZW in Figure 3.
The geometrical meaning of these points and the behavior of
the flat tetrahedron as we move around the caustic curve are
illustrated in Figure 4. At point Y, vectors J1 and J2 are
antiparallel, giving J12 its minimum length. As J2 rotates in a
counterclockwise direction, at first J12 grows and J23 shrinks,
as illustrated in the diagram Y f X in the figure. This is a
point between Y and X on the caustic line of Figure 3. When

J2 rotates to the angle that causes J2 and J3 to be antiparallel,
then J23 is at its minimum length and we are at point X. As J2

continues to rotate, J23 starts to grow again while J12 continues
to grow, as illustrated in the diagram Xf Z in the figure. This
is a point between X and Z on the caustic curve. In this manner
we may continue around the caustic curve.

2.3. The Ponzano-Regge Formula. Suppose we are in the
classically allowed region so a real tetrahedron exists. Let ψi,
i ) 1, 2, 3, 4, 12, 23 be the exterior dihedral angles of the
tetrahedron associated with edge Ji, that is, ψi is the angle
between the outward pointing normals of the two faces that meet
in edge i, so that each ψi lies in the interval [0, π]. Then the
Ponzano-Regge phase is defined by

where the sum runs over all six edges, and the Ponzano-Regge
approximation is

where the amplitude in the classically allowed region is given
by

Given the six quantum numbers ji, an algorithm for determin-
ing the dihedral angles ψi is the following. The rules we give
are equivalent to those of Ponzano and Regge and Schulten and
Gordon, but stated in terms of the diagonalization of the Gram
matrix. First we define the six Ji by (8) and then we set up the
Gram matrix using (89) and diagonalize it. If all the eigenvalues
are positive (or if detG ) 36V2 > 0), we are in the classically
allowed region and we may proceed. Then we construct the six
vectors Ji as explained in Appendix A, we compute the outward
pointing normals by taking cross products of the vectors

Figure 2. A tetrahedron of positive volume with conventional labeling
of edges by angular momentum vectors.

Figure 3. The J12-J23 plane for j1 ) 9/2, j2 ) 3, j3 ) 11/2, j4 ) 6.
The classical bounds are J12, min ) 3/2, J12, max ) 17/2, J23, min ) 5/2,
J23, max ) 19/2. The dimension of the matrix 〈j12|j23〉 is D ) dimZ ) 7.
The point J12 ) 5, J23 ) 9 (j12 ) 9/2, j23 ) 17/2) is very close to the
caustic line, but lies just inside. The Ponzano-Regge approximation
is too large by a factor of 7 at this point.

Figure 4. A sequence of four flat tetrahedra, moving around the caustic
line of Figure 3 in a counterclockwise direction from point Y. The
parameters are the same as in Figure 3. The numbers 1, 2, etc., refer to
vectors J1, J2, etc.

ΦPR ) ∑
i

Jiψi (15)

{j1 j2 j12

j3 j4 j23
} ≈ APR cos(ΦPR + π

4 ) (16)

APR ) 1

√12π|V|
(17)
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spanning the four faces, and finally we compute cos ψi as the
dot products of the outward pointing normals. This determines
ψi uniquely as an angle in [0, π]. This is not the most efficient
algorithm from a numerical standpoint, since to determine the
ψi only the dot products of the vectors are needed and not
the vectors themselves, but it is conceptually clean and has the
benefit of allowing one to draw or visualize the tetrahedron itself.

The Ponzano-Regge phase ΦPR is continuous inside the
classically allowed region, as are the dihedral angles ψi. On
the caustic boundary all tetrahedra are flat so all dihedral angles
are either 0 or π. These angles are continuous (hence constant
at 0 or π) on the caustic line between points XYZW, but some
angles jump discontinuously between 0 and π at those points.

The possible values of the ψi on the caustic curve are
summarized in Table 1. The four segments of the caustic curve
are identified by the classically forbidden region (ABCD) to
which they are adjacent. In segments A, B, and D there are
two possibilities, while in segment C there is only one. In
segment A, the first column applies if J12, max ) J3 + J4 and the
second column otherwise; in segment B, the first column applies
if J23, min ) J2 - J3 or J4 - J1 and the second column otherwise;
and in segment D, the first column applies if J23, max ) J2 + J3,
and the second column otherwise. Examples of these rules may
be seen in Figure 4. The dihedral angles in a flat tetrahedron
such as the ones labeled Y f X and X f Z are 0 for interior
segments and π for segments bounding the outside of the plane
figure.

Although some angles ψi are discontinuous at points XYZW,
the Ponzano-Regge phase ΦPR is continuous everywhere on
the caustic boundary (hence everywhere inside and on the
caustic boundary).

The angles ψi that are π on a segment of the caustic curve
correspond to the vectors Ji that lie on the outside of the plane
figure, as seen in the examples in Figure 4. That is, they
correspond to a set of vectors Ji that sum to zero. But this implies
that the sum of the corresponding ji values is an integer

where the prime means to sum only over i such that ψi on a
segment of the caustic curve has the value π. For example, from
the first column for segment B in Table 1 we have j1 + j3 + j12

+ j23 ) integer.
In the classically forbidden regions the method of Appendix

A yields vectors Ji whose (x, y, z) components can be labeled
as (r, r, i), where r means real and i means imaginary. These
vectors have real lengths Ji that are fixed by (8) and the values
of the ji. The cross products Ji × Jj have the form (i, i, r) and
also have real lengths, which are twice the real areas of the

faces. Dividing by these we obtain complex unit normals to
the faces of the form (i, i, r), whose dot products, the cosines
of the angles ψi, are real. These cosines lie outside the range
[-1, +1], however, indicating that the ψi are complex. Since
the complex inverse cosine function has multiple branches, we
must determine the branch.

A first requirement is that branch chosen for ψi should agree
with the value of ψi as we approach caustic curve, where ψi is
either 0 or π, depending on i and the region ABCD, as shown
in Table 1. If ψi ) 0, cos ψi ) +1 on the caustic curve, then
cos ψi is real and >1 in the classically forbidden region. In this
case we choose ψi ) iψj i, where ψj i ) cosh-1(cos ψi) is real
and positive. If ψi ) π, cos ψi ) -1 on the caustic curve, then
cos ψi is real and <-1 in the classically forbidden region. In
this case we choose ψi ) π + iψj i, where ψj i ) -cosh-1(-cos
ψi) is real and negative. We can summarize these two cases by

Despite the sign and absolute value functions, ψj i is a smooth
function of position in any of the four classically forbidden
regions.

This procedure allows us to determine which classically
forbidden region (ABCD) we are in, for if we note the signs of
the cos ψi, those that are >1 indicate angles that vanish on the
segment of the caustic curve bordering the region, while those
that are <-1 indicate angles that become π on that segment.
The pattern of zeros and π’s uniquely identifies the region, as
shown by Table 1.

With these definitions, the imaginary part of the analytic
continuation of ΦPR is

where the sum runs over all six i. The quantity Φj PR vanishes
on the caustic curve and becomes real and negative as we move
into classically forbidden regions A or D, or real and positive
as we move into regions B or C. The 6j symbol decays
exponentially as we move into any classically forbidden region,
a behavior that is captured by exp(-|Φj PR|) in all regions. Since
ΦPR has only one sign in any of the four classically forbidden
regions, its absolute value is a smooth function in those regions.
Finally, the Ponzano-Regge approximation in the classically
forbidden regions is

where the amplitude is given by

and where ν6j is given by (18). The definitions we have made
allow a single formula to be written down for all four regions,
but it is easy to write four formulas for the four regions without
the use of sign or absolute value functions.

2.4. The Phase Space of the 6j-Symbol. The phase space
of the 6j-symbol is the set of all closed figures that can be
obtained by placing Ji, i ) 1, 2, 3, 4 end-to-end, for fixed values

TABLE 1: The Dihedral Angles ψi on the Segments of the
Caustic Curve Bounding Classically Forbidden Regions
ABCDa

i A A B B C D D

1 π 0 π 0 π π 0
2 π 0 0 π π 0 π
3 0 π π 0 π 0 π
4 0 π 0 π π π 0
12 π π π π 0 0 0
23 0 0 π π 0 π π

a There are two possibilities for segments A, B and D, and one
for segment B.

V6j ) ∑
i

′ji ) integer (18)

ψ̄i ) sign(cos ψi) cosh-1(|cos ψi|) (19)

Φ̄PR ) ∑
i

Jiψj i (20)

{j1 j2 j12

j3 j4 j23
} ≈ APR exp(- |Φ̄PR|) (21)

APR ) (-1)ν6j

2√12π|V|
(22)
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of the lengths of these vectors, modulo proper rotations. That
is, the vectors must satisfy (2). This is the point of view of
Kapovich and Millson,18 that recently has been further developed
by Charles.14 This space can also be derived by symplectic
reduction19 from a model of four independent angular momenta
built around Schwinger’s20 oscillators, much as in the treatment
of Aquilanti et al.16 of the 3j-symbol. In our applications we
will think of the lengths Ji, i ) 1, 2, 3, 4, as being given by the
quantization condition (8) in terms of the fixed quantum numbers
ji, i ) 1, 2, 3, 4, appearing in a 6j-symbol. For a given closed
chain formed by Ji, i ) 1, 2, 3, 4, we can draw vectors J12 and
J23 defined by (3) to obtain a tetrahedron. Thus the phase space
can also be thought of as the set of all real tetrahedra, in which
the lengths Ji, i ) 1, 2, 3, 4, are fixed. The lengths J12 and J23,
however, vary continuously between the limits (10).

All such tetrahedra are generated if we let J12 vary from J12, min

to J12, max, while for each value of J12 we let the dihedral angle
φ12 vary from -π to +π. Here φ12 is the interior dihedral angle,
illustrated in Figure 5, that is uniquely defined in the interval
-π < φ12 e π by requiring that φ12 ) 0, π correspond to flat
tetrahedra, and that 0 < φ12 < π correspond to tetrahedra with
positive volume (this is the case illustrated in Figure 5). It is
related to the exterior dihedral angle ψ12 used in the Ponzano-
Regge formula by |φ12| + ψ12 ) π. The angle φ12 distinguishes
tetrahedra related by spatial inversion (i.e., time reversal), while
ψ12 does not. Similarly, we could generate all real tetrahedra
by varying J23 and the dihedral angle φ23. The choice of J12,
φ12 for this process is arbitrary, but it gives us a definite
convention for coordinates on the phase space of the 6j-symbol,
namely, (J12, φ12).

The manifold of such tetrahedra, modulo proper rotations, is
a sphere. To see this, define

and write

so that Kz varies between -D/2 and +D/2 as J12 goes from
J12, min to J12, max (see (12)). Then define a polar angle θ12 by

and set

so that (Kx, Ky, Kz) are Cartesian coordinates on a sphere of
radius D/2 with spherical angles (θ12, φ12). The azimuthal angle
φ12 on the sphere is the same as the interior dihedral angle in
the tetrahedron.

This is the 6j-sphere, on which the north pole is Kz ) D/2 or
J12 ) J12, max, the south pole is Kz ) -D/2 or J12 ) J12, min, and
curves of constant J12 in general are small circles Kz ) const.
It is illustrated in Figure 6, which shows several curves of
constant J12. Flat configurations correspond to φ12 ) 0 or π,
that is, they lie on the Kx-Kz plane (the great circle Ky ) 0).
The hemisphere Ky > 0 (Ky < 0) consists of tetrahedra of positive
(negative) volume. Spatial inversion (i.e., time reversal) is a
reflection in the plane Ky ) 0 (it amounts to Kyf -Ky).

Any quantity defined in terms of the tetrahedron that is
invariant under proper rotations corresponds to a function on
the 6j-sphere. For example, J23 is such a function, as is φ23.
Curves of constant J23 are illustrated in Figure 7. The extrema
of J23 are both flat configurations lying on the great circle Ky )
0, with J23 ) J23, min on the semicircle Kx > 0 and J23 ) J23, max

on the semicircle Kx < 0. This is apparent from figures such as
diagram X in Figure 4, which illustrates the case J23 ) J23, min

and which shows that φ12 ) 0 (not π) at such a configuration.
Two views of the 6j-sphere are given in Figure 7 to show both
extrema of J23 and curves of constant J23 for intermediate values.
Notice that the curves of constant J23 are not small circles. That
is because the coordinates we are using on the 6j-sphere make
the curves of constant J12 look simple (they are small circles),

Figure 5. Definition of the interior dihedral angle φ12. The other interior
dihedral angle φ23 is defined similarly.

J12,avg ) 1
2

(J12,max + J12,min) (23)

Kz ) J12 - J12,avg (24)

Kz ) (D/2) cos θ12 (25)

Kx ) (D/2) sin θ12 cos φ12

Ky ) (D/2) sin θ12 sin φ12
(26)

Figure 6. The phase space of the 6j-symbol is a sphere of radius D/2
in a space in which (Kx, Ky, Kz) are Cartesian coordinates. To within
an additive constant, Kz is J12 and the azimuthal angle φ12 is the dihedral
angle of the tetrahedron. Several curves of constant J12 (small circles)
are shown.

Figure 7. Curves of constant J23 on the 6j-sphere. The first view shows
the north pole and the point J23 ) J23, min, and the second shows the
south pole and the point J23 ) J23, max.
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but not the curves of constant J23. Had we based our coordinates
on J23 and φ23 instead, the roles would be reversed.

The diagrams in Figure 7 were created in the following way.
We set up a grid of coordinates (J12, φ12) by letting J12 vary
between J12, min and J12, max, and for each value of J12, letting
φ12 vary between (π. For each value of J12 at φ12 ) 0, we set
up the corresponding flat tetrahedron, such as the diagrams
labeled Yf X and Xf Z in Figure 4, both of which have φ12

) 0. For other values of φ12, we rotate the triangle 1-2-12
about the axis defined by J12 by angle φ12, using the right-hand
rule, while holding triangle 3-4-12 fixed. This is the “butterfly”
motion of the tetrahedron associated with the axis J12. This
creates a tetrahedron of the desired dihedral angle φ12. Then
we compute J23 for that tetrahedron. In this way, we set up an
array of J23 values on the grid. Finally, we draw the contour
lines of J23 for this grid, and plot them on the surface of the
sphere.

There are two ways to compute Poisson brackets on the 6j-
sphere. First, let F and G be two functions of the Ji, i ) 1, 2, 3, 4.
Then the Poisson bracket is the usual one in classical mechanics
for a set of independent angular momenta

For example, let LR ) rR × pR be the orbital angular momenta
of a collection of particles R ) 1, 2, ..., whose components
satisfy the Poisson bracket relations

These imply (27) for any functions F and G of these angular
momenta (with Lf J). Note that (27) implies that any function
of J1 and J2 has vanishing Poisson bracket with any function
of J3 and J4.

Hamilton’s equations can be expressed in terms of Poisson
brackets. Let H be a Hamiltonian with evolution parameter (the
“time”) λ, and let F be any function of Ji, i ) 1, 2, 3, 4. Then
the rate of change of F along the orbits of H is

For example, if we take H ) J12 ) |J1 + J2| and F ) some
component of one of the Ji, we find

where e12 is the unit vector in the direction J12. The λ-evolution
is a rotation of vectors J1 and J2 about the axis e12, while J3

and J4 remain fixed. This is the “butterfly” motion mentioned
above, and λ is the angle. If the initial conditions are chosen so
that λ ) 0 when φ12 ) 0, then λ ) φ12. On the 6j-sphere the
orbits of J12 are the curves J12 ) const, the small circles seen
in Figure 6.

Similarly, J23 generates another butterfly motion, in which
vectors J2 and J3 rotate about the axis e23 by the right-hand
rule, with dihedral angle φ23 as the parameter of evolution.
Vectors J1 and J4 remain fixed during this motion. The orbits

on the 6j-sphere are curves of constant J23, some examples of
which are illustrated in Figure 7.

Since a Hamiltonian and its evolution parameter are canoni-
cally conjugate variables, it follows that (J12, φ12) are canonically
conjugate variables on the 6j-sphere. Since J12 differs from Kz

by a constant, we can equally well use (Kz, φ12). Thus another
way to compute the Poisson bracket of any two functions defined
on the 6j-sphere is

This only applies to rotationally invariant functions, while (27)
can be used for any functions of the Ji, i ) 1, 2, 3, 4. Also,
expressing functions in terms of J12 and φ12 is usually difficult,
so in practice (27) is more useful than (31).

But (31) does show that the area of a closed curve on the
6j-sphere can be computed as

with due attention to the singularities of the (J12, φ12) coordinates
(there is no global symplectic 1-form on the sphere). The area
is D/2 times the solid angle subtended by the closed loop. This
is not the area on the surface of a sphere of radius D/2 in
(Kx, Ky, Kz) space, computed by Euclidean geometry, which
would be (D/2)2 times the solid angle, but it is the correct
measure of area from the standpoint of semiclassical mechanics.

In particular, the total area of the sphere is (4π)(D/2) ) 2πD,
or D Planck cells of area 2π each (it would be 2πp in ordinary
units). This is what we expect for a semiclassical phase space
representing the subspace Z of the Hilbert space of four angular
momenta, which contains D quantum states.

Moreover, the Bohr-Sommerfeld rules say that the quantized
values of J12 should be given by orbits J12 ) const whose area
is (n + 1/2)(2π). On the sphere there is no way to distinguish
the interior and the exterior of a loop, but the Bohr-Sommerfeld
rule is the same in either case since the total area of the sphere
is an integer times 2π. Since the small circle J12 ) const encloses
area (2π)(J12 - J12, min) about the south pole, the quantized orbits
are those for which J12 ) J12, min + 1/2 + integer. By (8) this
gives the exact quantized values of j12, as indicated by (4). The
minimum and maximum quantized values of J12 are one-half
unit away from the values at the south and north poles,
respectively, corresponding to the one-half unit margin between
the quantized spots in Figure 3 and the bounding values of J12.
Figure 6 illustrates the quantized orbits of J12 for the case D )
5, numbered 0 to 4 as J12 increases (orbit 0 lies close to the
south pole and cannot be seen in the figure).

Similarly, the quantized orbits of J23 are those satisfying J23

) J23, min + 1/2 + integer. These are labeled 0 to 4 in Figure 7,
for the same case (D ) 5) illustrated in Figure 6. The dihedral
angle φ23 is an angle parametrizing position along the curves
J23 ) const, although it is not an azimuthal angle in (Kx, Ky, Kz)
space.

But the logic that leads to the conclusion that (J12, φ12) are
canonical coordinates on the sphere applies also to (J23, φ23),
so there is a canonical transformation connecting (J12, φ12) and
(J23, φ23). According to Miller’s theory,21 the F4-type generating
function of this canonical transformation is the phase of the
semiclassical matrix element 〈j12|j23〉. (We follow Goldstein’s22

conventions for classifying generating functions).

{F, G} ) ∑
i)1

4

Ji · (∂F
∂Ji

× ∂G
∂Ji

) (27)

{LRi, L�j} ) δR�εijkLRk (28)

dF
dλ

) {F, H} (29)

dJi

dλ
) {e12 × Ji, i ) 1, 2

0, i ) 3, 4
(30)

{F, G} ) ∂F
∂φ12

∂G
∂J12

- ∂F
∂J12

∂G
∂φ12

(31)

area ) I J12dφ12 (32)
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Miller’s theory leads to difficult integrals in cases like this
(it certainly does for the 3j-symbol), and it has never been
carried through for the 6j-symbol, as far as we know. But it is
certain that the F4-type generating function that would result
would be the Ponzano-Regge phase ΦPR, to within an additive
constant. Moreover, Miller’s theory shows that the amplitude
determinant in the Ponzano-Regge formula is given by

to within a multiplicative constant. In this formula, the lengths
Ji, i ) 1, 2, 3, 4 are considered fixed, and the dihedral angles
ψi that appear in (15) are considered functions of all six lengths
Ji.

The Ponzano-Regge amplitude was first derived by Wign-
er,23 who had the intuition that the probability in making a
measurement of j23 for given value of j12 should be uniformly
distributed in the angle φ12. That this is so follows from standard
semiclassical theory and the fact that φ12 is conjugate to J12.
This amplitude is also inversely proportional to the square root
of a Poisson bracket

which was computed using (27). The volume factor V is the
part of the amplitude that was obtained by Wigner, while the
factor J12J23, when replaced by (j12 + 1/2)(j23 + 1/2), is needed
to convert from the unitary matrix element 〈j12|j23〉 to the 6j-
symbol (see Edmonds1 eq 6.2.10). The use of Poisson brackets
for computing amplitude determinants is discussed by Little-
john24 and by Aquilanti et al.16

The relation between Figure 3 and the phase space of the
6j-symbol is the following. A point inside the square of Figure
3 specifies values of J12 and J23 that are allowed by the in-
equalities (9). These in turn specify two curves in the phase
space, one of constant J12 and the other of constant J23. If these
curves intersect, as in part a of Figure 8, then we are in the
classically allowed region. In that case, the intersection points,
labeled P and Q in the figure, are the stationary phase points of
the semiclassical evaluation of the matrix element 〈j12|j23〉. These
points represent two tetrahedra that are mirror images of each
other (they are related by time reversal). The total semiclassical
matrix element (the Ponzano-Regge formula) is a sum of

contributions from these two tetrahedra, which are complex
conjugates of each other. Thus, the semiclassical matrix element
is real.

If the two curves do not intersect, as in part b of Figure 8,
then we are in the classically forbidden region. Both curves are
manifolds of real tetrahedra, one with a fixed value of J12, the
other of J23, but since they do not intersect, there is no real
tetrahedron that simultaneously has both given values of J12 and
J23. In this case the analytic continuations of the curves into
complex phase space (a complexified sphere) do intersect, and
these intersections represent the stationary phase points in the
classically forbidden region. We make no attempt to sketch the
complexified phase space, however.

In addition to its interpretation as a generating function, the
phase of semiclassical matrix elements such as 〈j12|j23〉 is
geometrically one-half the area enclosed by the intersection of
the quantized classical orbits in phase space.24 (The relative
phase between the two branches of the WKB solution is the
area, but this is shared between two exponentials to create a
cosine term. Thus the argument of the cosine is one-half the
area.) In part a of Figure 8 the area in question is the shaded
region (a “lune”).

If the two curves J12 ) const and J23 ) const are tangent,
then we are at a caustic. A caustic implies a flat tetrahedron of
zero volume, so such tangencies can occur only in the plane Ky

) 0.
The different types of caustics than can occur are illustrated

in Figure 9. Part A of Figure 9 is obtained from the curves of
Figure 8 by adjusting the J12 or J23 values to create a tangency.
As expected, it lies between the classically allowed region (part
a of Figure 8) and the classically forbidden region (part b of
Figure 8). The point of tangency T is the caustic point. From
part A of Figure 9 we move into the classically allowed region
if we either decrease J12 or increase J23. Thus we see that it
corresponds to region A of Figure 3.

If we allow J12 in part A of Figure 9 to decrease, the small
circles J12 ) const sweep down from the north pole through
the oval J23 ) const, passing through the classically allowed
region, until a tangency is reached at the lower point of the

Figure 8. In part a, the classically allowed region, an orbit of constant
J12 intersects an orbits of constant J23. The shaded area is the
Ponzano-Regge phase, to within an additive constant. In part b, the
classically forbidden region, the orbits do not intersect.

APR ) | ∂
2ΦPR

∂J12∂J23
|1/2

(33)

{J23, J12} )
J1 · (J2 × J3)

J12J23
) 6V

J12J23
(34)

Figure 9. Caustics occur when the curve J12 ) const is tangent to the
curve J23 ) const. The four types of such tangencies are illustrated.
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oval J23 ) const, where the small circle J12 ) const is close to
the equator. This is another caustic, illustrated in part B of Figure
9. The shaded area is the continuation of the shaded area in
part a of Figure 8, and again T is the caustic point. From this
caustic, we pass back into the classically allowed region if either
J12 increases or J23 increases, so we are in region B of Fig-
ure 3.

If from part A of Figure 9 we allow J23 to increase, then the
curves J23 ) const sweep through the small circle J12 ) const
about the north pole, finally reaching another tangency on the
other side where Kx < 0. The result is illustrated in part C of
Figure 9, where again point T is the caustic point. From this
caustic we pass back into the classically allowed region if we
let either J12 or J23 decrease, so this corresponds to region C of
Figure 3.

As J23 increases from its value in part C of Figure 9, the
curve J23 ) const shrinks down around the point J23 ) J23, max

on the semicircle Ky ) 0, Kx < 0. Then allowing J12 to decrease,
the small circle around the north pole moves south, passing
through the curve J23 ) const, producing finally a tangency T
on the other side, as illustrated in part D of Figure 9. Now the
shaded area (twice the Ponzano-Regge phase plus a constant)
covers nearly the entire sphere. From this configuration we pass
back into a classically allowed region if either J23 decreases or
J12 increases, so we are in region D in Figure 3.

In the case of an ordinary oscillator with a flat phase space
(the plane), the difference in the actions between the two turning
points is one-half the area of the orbit, and has the form (n +
1/2)π, where n is an integer. As explained in the introduction,
this is a requirement for the existence of a uniform approxima-
tion of the Weber function type. The analogous statement for
the 6j-symbol with the spherical phase space is sometimes true,
and sometimes not. A case where it is true is obtained from
diagrams A and B of Figure 9 in which we regard j23 fixed and
j12 variable. As J12 decreases from the north pole (its maximum
value), we first encounter a caustic of the type A, where the
area of the lune is zero. Continuing to decrease J12, we pass
through the classically allowed region, finally encountering a
caustic of the type B (the lower turning point), where the area
of the lune is the quantized area of the oval j23 ) const. This
area has the form (n + 1/2)2π, so the differences in the actions
at the two turning points are quantized. This implies that the
difference in the Ponzano-Regge phases ΦPR between the two
turning points is also quantized.

A case where the differences in the actions are not quantized
and a uniform approximation of the Weber function type does
not exist is obtained when j23 has a value such as that illustrated
in part C of Figure 9. In this case, as we let J12 decrease from
its maximum value at the north pole the first caustic we
encounter is of type C, where the area of the lune is the area of
the curve J12 ) const (the shaded area in part C of the figure).
This area is not quantized, since the value of J12 at a caustic is
not quantized. As J12 decreases, we eventually reach the lower
caustic of type B, where the area of the lune is the quantized
area of the orbit j23 ) const. Thus, the differences between the
areas, one quantized, the other not, are not quantized. A case
like this (with caustics of the type B and C) is illustrated in
Figure 1.

We will now show that the d-matrices have a phase space
and an orbit and caustic structure that are identical, from a
topological standpoint, to those of the 6j-symbol.

3. The d-Matrices

3.1. Quantum Mechanics of the d-Matrices. The d-matrices
are defined by

where Uy(�) ) exp(-i�Jy) is a rotation operator with Euler angle
� about the y-axis, and |m〉 and |m′〉 are standard rotation basis
states (eigenstates of Jz). To indicate both the operator and the
quantum number, we will write these states as |Jz:m〉 and |Jz:
m′〉. By conjugation the rotation operator Uy(�) rotates the
angular momentum vector

where Ry(�) is the 3 × 3 rotation matrix for an active rotation
about the y-axis. We define

as illustrated in Figure 10, so that

where we use (36) and

Therefore Uy(�)|Jz:m′〉 is an eigenstate of n̂ ·J ≡ Jn with
eigenvalue m′, and we will write

so that

In this way the d-matrix is written as a unitary matrix element
connecting the eigenstates of two different operators. This
is the starting point for Miller’s21 theory of semiclassical

dmm'
j (�) ) 〈m|Uy(�)|m'〉 (35)

Uy(�)†JUy(�) ) Ry(�)J (36)

n̂ ) Ry(�)ẑ ) ( cos � 0 sin �
0 1 0

-sin � 0 cos � )(0
0
1

) ) (sin �
0

cos � )
(37)

Figure 10. Definition of Euler angle � and unit vector n̂.

(n̂ · J)Uy(�)|Jz:m'〉 ) Uy(�)(ẑ · J)|Jz:m'〉 ) m'Uy(�)|Jz:m'〉
(38)

n̂ · [Ry(�)J] ) [Ry(�)-1n̂] · J ) ẑ · J ) Jz (39)

Uy(�)|Jz:m'〉 ) |Jn:m'〉 (40)

dmm'
j (�) ) 〈Jz:m|Jn:m'〉 (41)
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matrix elements, as well as our own24,16 treatments of the
same subject.

3.2. Classical and Semiclassical Mechanics of the d-
Matrices. References on the semiclassical approximation for
the d-matrices include Brussaard and Tolhoek,25 Ponzano and
Regge,10 Braun et al.,26 and Sokolovski and Connor.27 In the
following we emphasize geometrical aspects of the problem not
covered by these authors.

The classical phase space for dmm′
j (�) is a sphere (“the

d-sphere”) in angular momentum space of radius |J| ) J,
where

The area of a loop on the surface of the sphere is given by

where φ is the azimuthal angle, again with due consideration
of the singularities of the coordinates (φ, Jz). That is, if the loop
subtends solid angle Ω, then the area is JΩ (not J2Ω, as in
Euclidean geometry). The total area of the sphere is therefore
4πJ ) (2j + 1)(2π), that is, the sphere consists of 2j + 1 Planck
cells, corresponding to the 2j + 1 basis states |Jz:m〉 or |Jn:m′〉.
Curves of constant ẑ ·J ) Jz and n̂ ·J ) Jn are small circles
centered on the axes ẑ and n̂, respectively, as illustrated in Figure
11.

The Poisson bracket of two functions F and G of J is (27)
with a single term in the sum

or, equivalently, for functions of (φ, Jz)

For example, using (44) we find that Hamilton’s equations for
Hamiltonian Jz ) ẑ ·J with evolution parameter λ are

The motion is a rotation about the z-axis, so the orbits are the
small circles Jz ) const, as expected. The parameter of the orbit

is λ ) φ, so φ and Jz are conjugate variables, as indicated in
(45). Similarly, Jn generates rotations about the axis n̂.

Let (θ, φ) be the usual spherical coordinates referred to the
axis ẑ, and let (θ′, φ′) be an alternative set referred to the axis
n̂. That is, the (θ′, φ′) coordinates of a point (x, y, z) are the
same as the (θ, φ) coordinates of the inverse rotated point
Ry(�)-1(x, y, z). Thus the coordinate transformation (θ, φ) f
(θ′, φ′) is specified by

The azimuthal angle φ′ is conjugate to Jn, so both (φ, Jz) and
(φ′, Jn) are canonical coordinates on the sphere. The F4-type
generating function of the canonical transformation between
these coordinates is the phase of the semiclassical approximation
to the d-matrices, according to Miller’s theory. This aspect of
the problem has been developed by Sokolovski and Connor.27

The classical observables Jz and Jn are functions on the
d-sphere that vary continuously between the limits

The quantized orbits of Jz and Jn are those enclosing n + 1/2
Planck cells where n is an integer. This implies Jz ) m and Jn

) m′ with the usual rules for quantum numbers m and m′

in integer steps. Thus the maximum and minimum values of m
and m′ lie one-half unit away from the maximum and minimum
values of the classical observables Jz and Jn, as illustrated in
Figure 12. This figure may be compared to Figure 3 for the
6j-symbol. See also Figure 1 of Braun et al.26

When the Jz-orbit and the Jn-orbit intersect one another as in
part a of Figure 11, then we are in the classically allowed region
of the d-matrices. There are generically two intersection points

Figure 11. Curves of constant Jz and Jn may intersect in the classically
allowed region (a) or not intersect in the classically forbidden region
(b).

J ) j + 1
2

(42)

area ) I Jz dφ (43)

{F, G} ) J · (∂F
∂J

× ∂G
∂J ) (44)

{F, G} ) ∂F
∂φ

∂G
∂Jz

- ∂F
∂Jz

∂G
∂φ

(45)

dJ
dλ

) ẑ × J (46)

Figure 12. The square identifies the bounds on the classical observables
Jz and Jn, while the spots indicate the quantized values Jz ) m, Jn )
m′. The ellipse is the caustic curve.

sin θ cos φ ) cos � sin θ′ cos φ′ + sin � cos θ′,
sin θ sin φ ) sin θ′ sin φ′,

cos θ ) -sin � sin θ′ cos φ′ + cos � cos θ′
(47)

-J e Jz, Jn e +J (48)

-j e m, m' e +j (49)
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related by a reflection in the plane Jy ) 0, marked by unit vectors
from the origin â and â′ in Figure 13. We concentrate on
intersection â, for which Jy > 0; at the other intersection a′ we
have Jy < 0. In the coordinate systems (θ, φ), (θ′, φ′), the θ and
θ′ coordinates of intersection â are given by

where Jz and Jn label the two small circles and where the second
form applies if J, Jz, and Jn take on their quantized values. As
for the φ and φ′ coordinates of intersection point â, they can be
obtained by solving (47), assuming θ, θ′, and � are given. This
gives

where we write η ) π - φ′ as illustrated in Figure 13. Equations
51 uniquely determine φ and η in the interval [0, π] (assuming
that the Jz- and Jn-orbits actually intersect).

Figure 13 draws attention to the spherical triangle defined
by ẑ, n̂, and â, whose sides are arcs of great circles subtending
angles θ, θ′, and �. Equations 51 are the law of cosines for
spherical triangles, applied to the interior angles φ and η, as
shown in the figure. As for the third interior angle, we define κ

as the opening angle of the lune (the shaded area), as illustrated
in the figure. Then it is easy to show that the third interior angle
of the spherical triangle at vertex â is π - κ. For this angle the
law of cosines gives

determining κ also uniquely in the interval [0, π].
We define Φd as one-half of the area of the shaded lune seen

in Figure 13, which is also the F4-type generating function of
the transformation (θ, φ)f (θ′, φ′) (Sokolovski and Connor27).
Then we have

where the final form applies if J, Jz, and Jn take on their
quantized values. The result is the sum of angular momentum
quantum numbers times dihedral angles, that is, the interior
angles of the spherical triangle formed by (ẑ, n̂, â) are also the
interior dihedral angles of the tetrahedron or parallelepiped
formed by those vectors. The analogy with the Ponzano-Regge
formula is more transparent if we use the exterior dihedral angles
κ, π - φ, and π - η, so that

in which the first three terms look like the sum (15), while the
final term just produces a phase factor (-1)m+m’ in the
asymptotic formula.

It is straightforward to prove (53) by elementary geometry,
but another proof, based on symplectic reduction of Schwinger’s
oscillator model of angular momentum20 (essentially the Hopf
fibration), leads to the following generalization. Let a polygon
on the unit sphere be specified by vertices (v̂1, ..., v̂n) connected
by arcs of small circles, where the small circle proceeding from
v̂i to v̂i+1 is obtained by rotating v̂i about axis n̂i by angle φi,
using the right-hand rule. Also, let κi be the interior angle
between the two small circles meeting at v̂i. Then the solid angle
of the interior of the polyhedron, defined as the region to the
left as we move along the small circles, is

Special cases of this formula include the solid angle of a
spherical triangle (with sides that are great circles), Ω ) κ1 +
κ2 + κ3 - π, and (53), for which n ) 2, κ1 ) κ2 ) κ, and Φd

) Ω/2. Equation 55 can also be derived as a special case of
the Gauss-Bonnet theorem.

The spherical triangle formed by (ẑ, n̂, â) plays another role.
We define Vd as the volume of the parallelepiped spanned by
these three vectors, which can be written in a variety of ways

where we use the law of sines for the final three expressions.
One of these equalities is equivalent to the y-component of (47).
The square of Vd is the determinant of the Gram matrix formed
by vectors (ẑ, n̂, â)

Figure 13. Vector â points to the intersection of the Jz orbit with the
Jn orbit, with Jy > 0. Vectors ẑ, n̂, and â define a spherical triangle,
with interior angles φ, η, and κ.

cos θ )
Jz

J
) m

j + 1
2

, cos θ′ )
Jn

J
) m'

j + 1
2

(50)

cos φ ) cos θ′ - cos � cos θ
sin � sin θ

,

cos η ) cos θ - cos � cos θ′
sin � sin θ′ (51)

cos(π - κ) ) cos � - cos θ cos θ′
sin θ sin θ′ ) -cos κ

(52)

Φd ) J(κ - φ cos θ - η cos θ′) (53)

) Jκ - Jzφ - Jnη ) (j + 1
2)κ - mφ - m'η

Φd ) (j + 1
2)κ + m(π - φ) + m'(π - η) - (m + m')π

(54)

Ω ) 2π - ∑
i)1

n

[(π - κi) + (v̂i · n̂i)φi] (55)

Vd ) (z × n̂) · â ) sin � sin θ sin φ (56)
) sin � sin θ′ sin η ) sin θ sin θ′ sin κ

Vd
2 ) det(ẑ · ẑ ẑ · n̂ ẑ · â

n̂ · ẑ n̂ · n̂ n̂ · â
â · ẑ â · n̂ â · â )

) det( 1 cos � cos θ
cos � 1 cos θ′
cos θ cos θ′ 1

) (57)

) 1 + 2 cos � cos θ cos θ′ - cos2 � -
cos2 θ - cos2 θ′
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Since we are working with the volume of the parallelepiped
instead of the volume of the tetrahedron, there is no factor of 6
in (56) or of 62 ) 36 in (57). The volume Vd appears in the
amplitude of the asymptotic formulas (58) and (65).

Including all the details (Maslov indices, phase conventions,
etc.), the asymptotic expression for the d-matrix in the classically
allowed region is

where the amplitude is

According to ref 24 the amplitude of the WKB approximation
for the d-matrix should be proportional to the inverse square
root of the Poisson bracket {Jz, Jn}, evaluated at the intersection
between the two orbits, J ) Jâ. Indeed, using (44), we see that
it is

The caustics of the d-matrices occur when the small circles
Jz ) const and Jn ) const are tangent or, equivalently, when
the vectors (ẑ, n̂, â) are linearly dependent so that Vd ) 0.
Multiplying (57) by J2, using (50) and setting the result to zero
gives us the equation of the caustic in Jz-Jn space

an ellipse whose axes are oriented 45° to the Jz-Jn axes, and
whose semimajor and semiminor axes are 21/2 cos(�/2), 21/2

sin(�/2). An example is illustrated in Figure 12; see also Figure
1 of ref 26. The ellipse touches the boundary defined by the
classical limits (48) at four points, creating four classically
forbidden regions labeled ABCD in Figure 12. The square of
the volume Vd

2 is negative in the classically forbidden regions,
and Vd itself is imaginary there.

Another point of view on the caustics is to hold Jz and Jn

fixed, thereby fixing the sizes of the two small circles, and to
vary �, which moves the position of the small circle Jn ) const.
Then the small circles are tangent at the turning points � ) �1

or �2, where 0 e �1 e �2 e π, and where

The classically allowed region is �1 e � e �2, while the two
classically forbidden regions are 0 e � e �1 and �2 e � e π.

The four types of tangencies of the two small circles are
illustrated in Figure 14. In all four parts of the figure, T is the
caustic point (the point of tangency). In part A we are at the
upper turning point � ) �2, because if � decreases we obtain
two intersection points and are in the classically allowed region.
In fact, this is the case �2 ) θ + θ′ < π. Or if we hold � fixed
but decrease either Jz or Jn, again we enter the classically allowed
region, since one or the other of the two small circles expands

and the tangency develops into two intersection points. Thus
part A of Figure 14 corresponds to the corner A of Figure 12.
In part B of Figure 14 we are at the lower turning point � ) �1

) θ - θ′ > 0, since if � increases we move into the classically
allowed region. The same happens if we hold � fixed and either
increase Jz or decrease Jn, so this corresponds to corner B of
Figure 12. In part C of Figure 14 we are at the lower turning
point � ) �1 ) θ′ - θ > 0, which corresponds to corner C of
Figure 12 since we enter the classically allowed region if either
Jn increases or Jz decreases. Finally, in part D of Figure 14 we
are at the upper turning point �2 ) 2π - θ - θ′ < π, which
corresponds to corner D of Figure 12 since we enter the
classically allowed region if either Jz or Jn increases.

The four types of tangencies of orbits for the 6j-symbol,
illustrated in Figure 9, are topologically identical to the four
types for the d-matrices, illustrated in Figure 14. Similarly, the
four classically forbidden regions of the 6j-symbol, illustrated
in Figure 3, are in one-to-one correspondence with the four
classically forbidden regions of the d-matrices, illustrated in
Figure 12. Comparing Figures 3 and 12, we see that the labelings
of the corners by ABCD are not the same; but this is because
the point on the d-sphere of maximum Jn, namely, the point in
the direction n, corresponds to the point on the 6j-sphere of
minimum J23. If the J23 axis in Figure 3 had been drawn
increasing downward instead of upward, the labels on all four
corners (classically forbidden regions) of both Figure 3 and
Figure 12 would coincide.

Referring to Figure 12, if we hold � fixed and vary Jz or Jn,
moving from the interior of the ellipse (the classically allowed
region) to the boundary (the caustic), then all the angles φ, η,
and κ approach either 0 or π, depending on which segment
ABCD of the boundary (the caustic curve) we approach. The
values of these angles on the caustics are summarized in Table
2. For uniformity of notation, we write Ri, i ) 1, 2, 3 for κ, φ,
and η, as indicated in the table, and similarly we write ki, i )
1, 2, 3 for j, -m, -m′, where the signs are the same as in the
three terms of the expression (53) for Φd. Also shown in the

dmm'
j (�) ) Ad cos(Φd - π

4 ) (58)

Ad ) (-1)j-m'

√(π/2)J|Vd|
(59)

{Jz, Jn} ) (ẑ × n̂) · J ) JVd ) sin �Jy (60)
) J sin � sin θ sin φ

Jz
2 + Jn

2 - 2JzJn cos � - J2 sin2 � ) 0 (61)

�1 ) |θ - θ′|, �2 ) min(θ + θ′, 2π - θ - θ′)
(62)

Figure 14. Caustics of the d-matrices occur when the two small circles
Jz ) const and Jn ) const are tangent. There are four possible
configurations.
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table is the integer νd for the four classically forbidden regions,
defined by

where the sum is only taken over i such that Ri ) π. The
definition is similar to that of ν6j in (18), and used for a similar
purpose, that is, the asymptotic form of the d-matrices in the
classically forbidden regions carries a phase (-1)νd, effectively
due to the analytic continuation of Φd.

The angles Ri are extended into the classically forbidden
region in a manner exactly like that used for the ψi in the case
of the 6j-symbol, as explained below (18). That is, if Ri ) 0 on
the segment of the caustic curve adjacent to a given classically
forbidden region, then we define Ri ) iRj i, where Rj i ) cosh-1(cos
Ri) is real and positive; while if Ri ) π on the caustic curve,
then we define Ri ) π + iRj i, so that Rj i ) -cosh-1(-cos Ri) is
real and negative. In the classically forbidden regions, the
quantities cos Ri, given by (51) and (52), lie outside the interval
[-1, -1].

We now define a quantity related to the analytic continuation
of Φd into the classically forbidden regions

Despite the absolute value and sign functions, Φj d is smooth
over any given classically forbidden region. This is important
for root finders that rely on smoothness, such as the Newton-
Raphson method. The quantity Φj d is zero on the caustic
boundary and real and negative as we move into classically
forbidden regions B and C, and real and positive as we move
into classically forbidden regions A and D. These are the same
rules as for Φj PR. The d-matrices decrease exponentially as we
move into any classically forbidden region, a behavior that is
captured by exp(-|Φj d|) in all cases.

Finally, the asymptotic expression for the d-matrices in the
classically forbidden region is

where

4. The Uniform Approximation

4.1. Remarks on Uniform Semiclassical Approximations.
The traditional method of constructing uniform semiclassical
approximations, the “method of comparison equations”, is

reviewed by Berry and Mount,28 with citations to earlier
literature. In this method one takes a one-dimensional Schrö-
dinger equation (a second-order differential equation in x) and
performs a coordinate transformation X ) X(x) to create a new
Schrödinger equation in X which, after the neglect of terms of
order p2, becomes a standard, solvable equation. The most
common standard or “comparison” equations in practice are the
differential equations for Airy or Weber (parabolic cylinder)
functions.

Since both the 6j-symbols and the d-matrices satisfy second-
order difference equations, it is likely that a kind of discrete
version of the method of comparison equations, along the lines
of the discrete WKB theory used by Schulten and Gordon11

and refined by Braun,17 could be used to construct a uniform
approximation for the 6j-symbol. We have not constructed our
approximation in this way, however, and if we had, it is likely
that we would have missed much of the geometry discussed
above. Also, that approach would have produced a uniform
approximation for the 6j-symbol only for a fixed value of j12 or
j23, not over the whole range of both variables as we have done
here (it would not have produced a uniform approximation in
terms of d-matrices).

Hiding slightly beneath the surface of the usual method of
comparison equations is a transformation between the phase
spaces of the original problem and the standard problem. This
transformation is X ) X(x) and P ) (dx/dX)p, where the first
part is the coordinate transformation used in the method (a “point
transformation”) and the second part is the usual lift of a point
transformation into a canonical transformation. The second or
momentum equation can also be written p dx ) P dX, which
by integration gives

where s and S are the actions of the original problem and the
standard problem, respectively. In fact, this equation (the
equality of the actions) specifies the coordinate transformation
X ) X(x). The geometry is illustrated in Figure 15, in which
the method of comparison equations is used to map a quantized
curve of a nonlinear oscillator (the Morse oscillator, part a of
the figure) into a quantized curve of a standard problem (the
harmonic oscillator, part b of the figure). Equation 67 implies
the equality of the shaded areas in the figure, which in turn
determines the function X(x). In the figure, X0 ) X(x0).

The function X(x) can be analytically continued to the
classically forbidden regions where p, P, s, and S all become
complex, but the transformation X ) X(x) is real and in fact
forms a single, smooth (usually analytic) coordinate transforma-

TABLE 2: Values of the Angles K, O, and η on Caustics of
Type ABCD, also Integer νd for Four Caustic Types

i Ri ki A B C D

1 κ j 0 π π 0
2 φ -m 0 0 π π
3 η -m′ 0 π 0 π

νd 0 j - m′ j - m -m - m′

Vd ) ∑
i

′ki ) integer (63)

Φ̄d ) ∑
i)1

3

kiR̄i ) ∑
i)1

3

ki sign(cos Ri) cosh-1 |cos Ri|

(64)

dmm'
j ) Ad exp(- |Φ̄d|) (65)

Ad ) (-1)j-m'+νd

2√(π/2)J|Vd|
(66)

Figure 15. In the method of comparison equations, the phase space
of a nonlinear oscillator (a) is mapped into the phase space of the
harmonic oscillator (b). The function X(x) is determined by the equality
of areas; for example, in the figure the shaded areas are equal, and X0

) X(x0).

s(x) ) S(X) (67)
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tion throughout both classically allowed and forbidden regions.
See Figure 2 of ref 29 for a plot of the function X(x) in one
example, which shows its completely smooth behavior as one
passes from classically allowed to classically forbidden regions.
The equation s(x) ) S(X) is obvious in a sense: actions are areas,
and areas are preserved by canonical transformations.

We have been interested in the generalization of the method
of comparison equations to a class of canonical transforma-
tions that is larger than the point transformations. Since
canonical transformations are the semiclassical representa-
tives of unitary transformations, the idea is to carry out a
unitary transformation on the original problem such that the
transformed problem has a standard form, to within errors
of order p2, where the choice of unitary transformation is
guided by geometrical criteria in the classical phase space.
The standard problem is sometimes referred to as a “quantum
normal form”. Examples of quantum normal form calculations
and an interesting perspective on Bohr-Sommerfeld or torus
quantization may be found in refs 30 and 31. In those
references only the problem of determining eigenvalues is
considered, but in the present application we are interested
in the transformation of the wave functions, a problem that
involves extra features. As it turns out, it is necessary to
carry out not only a unitary transformation (which at the
classical level maps a pair of orbits into another pair that
are in standard form) but also a certain nonunitary transfor-
mation (to make the densities of probability on the orbits
come out in standard form).

In the usual method of comparison equations, the uniform
approximation for the exact solution ψ(x) is given by

where Ψ(X) is the standard solution of the standard problem
and a(x) and A(X) are the amplitudes of the two semiclassical
approximations, a(x) for the original problem and A(X) for the
standard problem. Both amplitudes diverge at the caustics, but
their ratio has a definite limit and in fact is smooth everywhere
across both classically allowed and forbidden regions.

Similarly, it turns out that the uniform approximation for the
6j-symbol in terms of d-matrices is given by

where APR is given by (17) or (22) and Ad by (59) or (66) in the
classically allowed or forbidden regions, respectively, and where
(-1)νex is an extra phase defined in (75). In other words, the
uniform approximation for the 6j-symbol is of the same form
(68) that emerges from the method of comparison equations,
apart from an extra phase.

4.2. The Details of the Uniform Approximation. At the
heart of the new uniform approximation is a smooth, area-
preserving map between the 6j-sphere and the d-sphere that is
parametrized by fixed, quantized values of J12 and J23, related
to quantum numbers j12 and j23 by (8). The area of the 6j-sphere
and that of the d-sphere must be equal, which implies

where D is given by (7) or (12). Thus the value of the parameter
j of the d-matrix in (69) is determined.

The quantum numbers j12 and j23 determine a specific pair of
orbits on the 6j-sphere, the small circle J12 ) j12 + 1/2, and the
oval J23 ) j23 + 1/2. The map is required to map the small
circle J12 ) j12 + 1/2, a quantized orbit, onto a small circle Jz

) const on the d-sphere. Because area is preserved, the small
circle on the d-sphere must also be quantized and contain the
same area about the north pole as the original small circle on
the 6j-sphere. That is, we must have j12, max - j12 ) j - m, or

where j12, avg ) (j12, min + j12, max)/2. This determines the quantum
number m in (69). We only require our map to map this specific
small circle of constant J12 on the 6j-sphere onto the corre-
sponding small circle on the d-sphere; other small circles of
constant J12 on the 6j-sphere, for other values of J12, are not
mapped to small circles of constant Jz on the d-sphere.

Similarly, we require the map to map the quantized oval J23

) j23 + 1/2 on the 6j-sphere onto a small circle on the d-sphere
that is centered about some direction n̂ that lies on the semicircle
Jy ) 0, Jx > 0 on the d-sphere. The direction n̂ is a function of
the angle �, which will be specified momentarily. Because area
is preserved, the new small circle on the d-sphere will be a
quantized orbit Jn ) m′, enclosing the same area about the axis
n̂ as the oval J23 ) j23 + 1/2 encloses about the point J23 )
J23, min. Since the minimum of J23 corresponds to the maximum
of Jn, the quantum number m′ satisfies j23 - j23, min ) j - m′, or

This determines the quantum number m′ in (69). We only
require our map to map this specific oval of constant J23 on
the 6j-sphere onto the corresponding small circle on the
d-sphere; other ovals of constant J23 on the 6j-sphere, for
other values of J23, are not mapped to small circles of constant
Jz on the d-sphere.

Finally, the parameter � is determined by requiring that the
area of the lune on the 6j-sphere should equal the area of the
lune on the d-sphere. Effectively, we rotate the small circle Jn

) m′ until the two areas are equal. This is in the classically
allowed region; in the classically forbidden region, the analytic
continuations of the areas on the two spheres are set equal. In
this way, if the 6j-symbol is in the classically allowed region,
then so is the d-matrix, and vice versa. This condition is the
analogue of (67) in the standard method of comparison
equations.

We take the classically allowed region first. We shall show
elsewhere that the Ponzano-Regge phase is related to the area
of the lune on the 6j-sphere by

where Φ0 is an extra phase that is related to the topology of
loops in the phase space of Schwinger’s oscillators, as discussed
in ref 16. Without going into this, we can determine Φ0 by
evaluating both the area of the lune and ΦPR at any point in the
classically allowed region or on the caustic curve, as in Figure
3, since ΦPR is a continuous function of position inside and on
that curve. A point on segment A of the caustic boundary is

ψ(x) ≈ a(x)
A(X)

Ψ(X) (68)

{j1 j2 j12

j3 j4 j23
} ≈ (-1)νex

APR

Ad
dmm'

j (�) (69)

D ) 2j + 1 (70)

m ) j12 - j12,avg (71)

m' ) j23,avg - j23 (72)

ΦPR ) 1
2

(area of lune) + Φ0 (73)
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convenient, since the area of the lune vanishes there, as shown
by part A of Figure 9. In this way we find

where

Note that νex is an integer. As a check one can evaluate ΦPR

and the area of the lune at other points on the caustic boundary
(segments BCD) and see that the answer for Φ0 agrees with
(74).

As for the area of the lune on the d-sphere, it is a function of
� and is twice Φd, given by (53). Altogether, the equation that
must be solved for � in the classically allowed region is

Despite the complications arising from the extra term Φ0, the
geometrical meaning of (76) is simple: the areas of the lunes
on the two spheres are equal.

Taking cosines, (76), (74), and (75) imply

which explains the extra phase in (69) as well as the opposite
signs on the π/4 in the asymptotic formulas (16) and (58).

In the classically forbidden region, the analytic continuations
of the areas of the two lunes become complex, but their real
parts are constant in any given region (ABCD), so only the
imaginary parts need be equated. In this case, the condition is

where Φj PR is given by (20) and Φj d by (64). Since both Φj PR

and Φj d vanish on the caustic, the condition (78) implies that if
the 6j-symbol is on a caustic, then so is the d-matrix (as it should
be).

To find the root of (76) in the classically allowed region, it
helps to know the values of the areas of the lunes on the d-sphere
at the two turning points �1 and �2, defined by (62). Call the
half areas of the d-lunes at these two turning points A1 and
A2. Then we have

From these we compute an initial estimate for the root based
on linear interpolation

after which a Newton-Raphson iteration converges to the actual
root in all the cases we have examined, without taking iterations
outside the interval [�1, �2]. We have no proof that this is always
true, however.

As for the classically forbidden regions, there are two of them,
0 < � < �1 and �2 < � < π, in which we must solve (78). Here
we cannot use linear interpolation to find an initial estimate of
the root since Φd is not defined at � ) 0 or � ) π. Instead we
have simply taken

and then applied a Newton-Raphson iteration. Occasionally
this takes us outside the given classically forbidden region,
whereupon we have reset the value of � to a point inside the
region, using a simple prescription. After this, the Newton-
Raphson converges to the root in all the cases we have
examined. Our algorithm has proven satisfactory for our
exploratory studies, but in more serious work the root finder
will require more careful attention.

The Newton-Raphson method requires us to know the
derivatives dΦd/d� or dΦj d/d�. These also appear in the role
that Φd plays as a generating function, and are equal to the
momentum p� of the rigid body, of which dmm′

j (�) is an
eigenfunction (on the group manifold SU(2)). The derivatives
are given by

This applies at the intersection â (not â′) in Figure 13, or at its
analytic continuation as specified by the definitions of the angles
Rj i at the end of section 3.2. It is convenient in using this formula
to avoid calculating the sines of κ, φ, or η, which become
complex in the classically forbidden region; this can be done if
|Vd| is evaluated by taking the square root of the expression in
(57).

The value of � is smooth and well behaved as we cross from
the classically allowed to forbidden regions, just as is the
function X(x) in the method of comparison equations. This is
illustrated in Figure 16, which uses the same parameters as
Figure 3. The heavy line in the figure is the same caustic line
as in Figure 3, and the light lines are contours of �, labeled in
degrees.

Finally, we remark that the ratio of the amplitudes APR/Ad

in (69) has the form ∞/∞ as the caustic is approached, so a
well-designed numerical implementation of that formula
would give special treatment to a small region around the
caustic, where l’Hospital’s rule would be used to avoid
numerical difficulties.

4.3. Numerical Results. Figure 17 shows the results of
numerical tests of the new uniform approximation, with
comparison with the Ponzano-Regge approximation. In the
figure, errors are plotted as a function of j12 for the 6j-symbols

Φ0 ) (J1 + J2 + J3 + J4 + J12 - J12,max)π ) (νex + 3
2)π
(74)

νex ) j1 + j2 + j3 + j4 + j12 - j12,max (75)

ΦPR ) Φd(�) + Φ0 (76)

cos(ΦPR + π
4 ) ) cos(Φd + νexπ + 3π

2
+ π

4 ) )
(-1)νex cos(Φd - π

4 ) (77)

Φ̄PR ) Φ̄d(�) (78)

A1 ) [j + 1
2
- max(m, m')]π,

A2 ) max(0,-m - m')π (79)

�0 ) �1 +
A1 - ΦPR + Φ0

A1 - A2
(�2 - �1) (80)

�0 ) {1
2

�1, 0 < � < �1

1
2

(�2 + π), �2 < � < π
(81)

dΦd

d�
or

dΦ̄d

d�
) -

J|Vd|

sin �
(82)

{39/2 23 j12

17/2 20 47/2 } and {156 184 j12

68 160 188 }
(83)
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in part a and part b of the figure, respectively. The values of
the five fixed j’s in part b are 8 times those in part a. The plots
show the absolute value of the difference between the exact
6j-symbol and the approximate value. In both parts of the figure,
the curve labeled PR is the error of the Ponzano-Regge
approximation, while that labeled U is the error of the uniform
approximation. The error of the Ponzano-Regge approximation
is large near the caustics, as expected, while the error of the
uniform approximation is fairly flat throughout the classically
allowed region and up to the caustics. The error of both
approximations falls rapidly to zero in the classically forbidden
regions, as of course does the exact 6j-symbol.

We computed the exact 6j-symbol with extended precision
integer arithmetic. Recently other calculations have used
extended precision floating point arithmetic to study the Wigner
3nj-symbols and their asymptotic properties.32,33 Extended
precision is required when summing series with alternating (or
variable) sign; often the desired sum is an exponentially small
residue left when much larger terms nearly cancel. With floating
point arithmetic one must carry enough extra precision so that
enough remains after the subtractions; with integer arithmetic
the answer is exact, but the cancellations are still present (hence
higher precision is carried in intermediate results).

In the classically allowed region the error is oscillatory, and
it is possible for the Ponzano-Regge error to be less than that
of the uniform approximation simply because it accidentally
happens to fall near a zero of the cosine function. One such
descending spike near j12 ) 140 can be seen in part b of the
figure. It is clear, however, that a fair comparison of the errors
in the classically allowed region must use the amplitude of the
oscillatory function and ignore the oscillations. By this measure
the error of the uniform approximation in Figure 17 is
approximately 30 times smaller than that of the Ponzano-Regge
approximation in the center of the classically allowed region
and gets better as we approach the caustics. This ratio is nearly
the same in parts a and b, indicating that both errors scale in
the same way with j. In the classically forbidden region the
errors can be compared directly, without removing any oscil-
latory factor, and again for the values used the figure shows
that the error in the uniform approximation is smaller than that
in the Ponzano-Regge approximation.

The error term for the Ponzano-Regge approximation is
unknown, as is that for the uniform approximation, so there is
no theory by which the errors can be compared. We would
expect, however, on general grounds that the two error terms
should scale the same with j, a conclusion that is supported by
the numerical evidence. That the ratio between the errors should
be as small as seen in (83) and Figure 17 was a surprise to us,
and we have no explanation for it. The values of the j’s chosen
in that example were essentially random, but when we try other
“randomly chosen” values of the j’s we get similar plots. If we
systematically search for j values such that the error of the
uniform approximation is as unfavorable as possible relative to
that of the Ponzano-Regge approximation in the classically
allowed region, we find cases such as

which gives the error plots in Figure 18. In this case the two
errors are comparable for an extended range of j12. We have
found no cases in which the uniform approximation is much
worse than the Ponzano-Regge approximation in the classically
allowed region.

There is the question of when the uniform approximation is
worst in an absolute sense. We define the relative error as the
difference between the approximation and the exact value,
divided by a reference value. In the classically forbidden region,
the reference value is the absolute value of the exact value.
Inside the maximum part of the Airy function lobe around the
turning points the reference value is the value of the Airy
function, without any cosine modulation. Elsewhere in the
classically allowed region we take the reference value to be the
amplitude of the Ponzano-Regge approximation.

Using this definition of relative error, we have systematically
searched for j values that make the relative error in the uniform
approximation largest. We find that they occur in cases for which
j12 ) j23 ) 0. This can only happen when the other four j’s are
equal, so we have a 6j-symbol of the form

For such symbols, the relative errors in both the uniform and
the Ponzano-Regge approximation actually increase with j,
reaching approximately 0.5 (uniform) or 1.1 (Ponzano-Regge)
when j ) 10. The tetrahedra corresponding to 6j-symbols of
the form (85) have two small edges (j12 and j23, with lengths
J12 ) J23 ) 1/2) with no vertex in common, as illustrated in
part a of Figure 19.

The uniform approximation is asymptotic, so it is no surprise
that it does not work well for small quantum numbers such as
those appearing in (85). Nevertheless it is interesting to see in
more detail why the approximation is not good. Figure 20 shows
the 6j-sphere for a symbol of the form (85). The orbit j12 ) 0
(J12 ) 1/2) is the small circle about the south pole, while the
orbit j23 ) 0 (J23 ) 1/2) is the curve that ends at the south pole
in a cusp. The orbit j23 ) 0 is not smooth at the south pole, and
it cannot be deformed into a small circle on the d-sphere by
any smooth map. A nonsmooth map has infinite derivatives,
and the semiclassical approximation breaks down. In fact, in
this case, even the 6j-sphere itself is not smooth. That is, the
6j-sphere is obtained by symplectic reduction from a higher-
dimensional phase space, and it is always topologically a sphere.

Figure 16. Contours of �, the root of (76) or (78), in the J12-J23 plane.
Parameters are same as in Figure 3, but quantized values are omitted.

{44 40 j12

20 24 28 } (84)

{ j j 0
j j 0 } (85)
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But when the first four j’s are all equal as in (85), the sphere is
not differentiable at the south pole. In this case, it would be
more appropriate to think of a tear drop with its cusp at the
south pole, rather than a sphere.

Unlike the Ponzano-Regge approximation, the uniform
approximation is not invariant under all the symmetries of the
6j-symbol. It is invariant under the three operations in which
the upper and lower elements of two columns are swapped, but
not under the six permutations of the columns. (We have not
tested the “extra” symmetries due to Regge.2) Therefore when
j * 0, we can permute columns in an unfavorable case such as
(85) to obtain a better approximation. We have tested an

algorithm in which, before applying the uniform approximation,
the columns of the 6j-symbol are permuted to place the column
with the largest minimum value in the third column. Then when
we search for the worst case of the uniform approximation, we
find that they occur with symbols of the form

in which three of the j’s are zero. Symbols of this form
correspond to tetrahedra that look like part b of Figure 19. In
this case the relative error in the uniform approximation no
longer grows with j, rather it seems to approach a limit of about
0.075.

Note that if any j in a 6j-symbol vanishes, the symbol can be
evaluated trivially in closed form. Thus, no approximation is
needed in the worst cases (85) and (86) that we have examined.

5. Conclusions

We have written computer codes that implement the uniform
approximations given in this paper, which document the
algorithms and check all their details. We will make these
programs available to any interested parties.

Figure 17. Absolute value of the error of the Ponzano-Regge approximation (PR) and of the uniform approximation (U) as a function of j12 for
values of the other five j’s shown in (83). The error is defined as the difference between the approximate value and the exact value.

Figure 18. Comparison of Ponzano-Regge (PR) and uniform (U)
errors as a function of j12 for the 6j-symbol (84). Dotted curve is the
error in the uniform approximation.

Figure 19. The uniform approximation is worst for tetrahedra that
look like part a, where the small edges are j12 and j23. If columns are
permuted to optimize the approximation, the worst case involves
tetrahedra that look like part b, where three edges are small.

Figure 20. The orbit j12 ) 0 is a small circle about the south pole,
while the orbit j23 ) 0 has a cusp at the south pole. The shaded area is
the “lune.”

{0 0 0
j j j } (86)
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We will publish the derivation of the uniform approximation
presented in this paper in a future article, in which we will make
explicit the symplectic map between the 6j-sphere and the
d-sphere that underlies it, as well as outline how the theory of
quantum normal forms leads to a uniform approximation in cases
like this.
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Appendix

(A) Constructing the Tetrahedron. The 6j-symbol specifies
the lengths Ji of the classical angular momentum vectors Ji but
not their directions, so there is the question of how the actual
vectors can be constructed in three-dimensional space, satisfying
the identities (2) and (3).

Initially we assume that real vectors Ji exist, and we define

which are the three vectors running along the edges emanating
from the upper vertex in Figure 2. We arrange these vectors as
columns of a 3 × 3 matrix F, and we let G ) FTF, where T
means transpose. Then G is the symmetric, nonnegative definite
Gram matrix of dot products

By using the geometry of the three triangles spanned by the Ai,
the components of G can be found in terms of the lengths Ji

Alternatively, without making any assumptions about the
existence of the Ji, we can define G in terms of the lengths Ji

by (89). Then there is the question of whether vectors Ai exist
such that (88) is satisfied.

The diagonalization of G is closely related to the singular
value decomposition of F. The latter is F ) UDVT, where U
and V are real orthogonal matrices and D is a real diagonal
matrix, containing the real singular values di on the diagonal.
But this implies G ) VD2VT, so V is the orthogonal matrix
that diagonalizes G and the eigenvalues of G are di

2. Therefore
to find F we first construct G by (89) and diagonalize it,
obtaining V and the eigenvalues of G. If these eigenvalues
are all nonnegative, then their square roots are the singular
values, and the matrix D is determined. This does not
determine U, but that matrix amounts to an overall rotation

of the tetrahedron which is arbitrary anyway. So we can set
U to anything convenient, such as the identity. Then we have
F ) DVT, and the vectors Ai can be obtained as the columns
of F. From these we can find the J’s by inverting (87) and
using (3).

Thus a real tetrahedron can be constructed if and only if
the eigenvalues of G are nonnegative. The tetrahedron is only
determined modulo overall rotations, proper and improper.
If we wish the tetrahedron to have a definite handedness, we
can perform a spatial inversion, if necessary, to make the
volume in (13) positive. The spatial inversion is properly
brought about by time reversal, not parity, which does not
change the sign of angular momenta. With this understanding,
the final tetrahedron is determined modulo proper rotations.

If any of the eigenvalues of G are negative, then a real
tetrahedron does not exist. It turns out that at most one
eigenvalue of G defined by (89) can be negative, assuming the
triangle inequalities on the Ji. A proof of this fact is easily given
by considering the secular polynomial of G, whose coefficients
can be expressed in terms of the lengths of the J’s and the areas
of the triangles formed by them. If G has one negative
eigenvalue, then we can order the singular values so that the
imaginary one is the third one. Then from F ) DVT we see
that the tetrahedron can be constructed with complex vectors,
in which the x- and y-components of the J’s are real, and the
z-components are purely imaginary.
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